Physics Graduate School

      > > Deutsch     

Home

Physics Institutes

News

Colloquia

Doctoral seminar

PCAM
European
Doctorate

Archive / downloads

APS Ethics Guidelines

TUG Online → Physics
Doctoral School

TU4U → Physics
Doctoral School

Uni Graz → Physics
Doctoral School

      

News

Huge Computing Time Project Granted

The proposal "Materials and Interfaces for Organic and Hybrid Photovoltaics" has been selected for a 2018 Innovative and Novel Computational Impact on Theory and Experiment (INCITE) award by Argonne Leadership Computing Facility (ALCF). A total of 330 Mio CPUh have been awarded to a consortium of top-notch researchers from around the world, including the Hofmann group. The activities in Graz will focus on determining the structure and the properties of inorganic/organic interfaces using the recently developed SAMPLE algorithm – always with the purpose of finding the ideal material combination for photovoltaic cells, which are a cruicial factor in the quest for renewable, clean energy sources.

Paper-Hattrick

June has been a very successful month for Oliver Hofmann and his group, with three papers accepted in peer-reviewed journals.

Simon Erker expanded the applicability of atomistic simulations to charged surfaces and defects with his paper in The New Journal of Physics. The method will find future applications in the prediction of surface structures and interface charge transfer on transparent conductive oxides, which are frequently employed in LEDs and solar cells.

Elisabeth Verwüster published a paper in The Journal of Chemical Physics, which explores the nature of the interactions between self-assembled molecules on metal surfaces. Understanding these interactions will help understanding the relation between molecular structure and polymorph formation. In the long run, it should become possible to design molecules such that specific crystal forms can be induced. This expertise is of high importance for many fields, most notably pharmaceuticals and organic electronics.

Veronika Obersteiner demonstrated the first practical application of the SAMPLE code, a highly innovative structure algorithm that is being developed in the Hofmann group. Together with experimental support from Nijmegen (The Netherlands), she uncovered the surface polymorph formed by tetracyanoethylene on Au(111). Thanks to the efficiency of SAMPLE, which allows structure prediction in a fraction of the time conventional try-and-error procedures would require, she was able convincingly demonstrate that the surface structure contains elements that cannot be imaged by STM experiments – a clear success story for computational structure prediction. The results and an introduction to the SAMPLE strategy have now been accepted for publication in Nano Letters, the world’s leading journal for nanotechnology.

Paper-Hattrick

June has been a very successful month for Oliver Hofmann and his group, with three papers accepted in peer-reviewed journals.

Simon Erker expanded the applicability of atomistic simulations to charged surfaces and defects with his paper in The New Journal of Physics. The method will find future applications in the prediction of surface structures and interface charge transfer on transparent conductive oxides, which are frequently employed in LEDs and solar cells.

Elisabeth Verwüster published a paper in The Journal of Chemical Physics, which explores the nature of the interactions between self-assembled molecules on metal surfaces. Understanding these interactions will help understanding the relation between molecular structure and polymorph formation. In the long run, it should become possible to design molecules such that specific crystal forms can be induced. This expertise is of high importance for many fields, most notably pharmaceuticals and organic electronics.

Veronika Obersteiner demonstrated the first practical application of the SAMPLE code, a highly innovative structure algorithm that is being developed in the Hofmann group. Together with experimental support from Nijmegen (The Netherlands), she uncovered the surface polymorph formed by tetracyanoethylene on Au(111). Thanks to the efficiency of SAMPLE, which allows structure prediction in a fraction of the time conventional try-and-error procedures would require, she was able convincingly demonstrate that the surface structure contains elements that cannot be imaged by STM experiments – a clear success story for computational structure prediction. The results and an introduction to the SAMPLE strategy have now been accepted for publication in Nano Letters, the world’s leading journal for nanotechnology.

TEDxGraz | ARTIFICIALLY RE-CREATE EVERYDAY EXPERIENCES | ANNA MARIA COCLITE

Temperature, shapes, textures are only some of the things that can be felt with the sense of touch. How to recreate the cycle of information from the environment to the skin to an action mediated by the brain? Anna Maria Coclite talks about how combining physics and chemistry can be used to create artificial skin for robots and humans.

Curiosity: it’s Anna’s driving force to pursue new ideas and ambitious projects. Each analysis unfolds one aspect of the story and her passion is putting them altogether to obtain the big picture. She is an Assistant Professor in the Institute of Solid State Physics of the Graz University of Technology and landed here after a postdoc of 3 years at the MIT, Boston, in the Chemical Engineering Department and after getting her PhD title at the University of Bari, Italy, in Chemistry.

This talk was given at a TEDx event using the TED conference format but independently organized by a local community. Learn more at http://ted.com/tedx

WKO Scholarship awarded to Paul Salzmann

The Master thesis of Paul on “Designing actuator arrays based on thermo-responsive polymers by initiated Chemical Vapor Deposition” has been awarded by the WKO-Steirermark for its applicability to industry.

Computing Time Award

Together with a consortium of five international collaborators from the United States, Germany and Finland, Oliver Hofmann won a 2017 Innovative and Novel Computational Impact on Theory and Experiment (INCITE) award. This gives his group access to MIRA, a national labs based supercomputer. Mira was the fifth-fastest supercomputer in 2013. The award comprises 160 million CPUh, worth approximately 1.6 million USD.
The project aims to advance the efficiency of organic and hybrid solar cells through computer-aided discovery and design of new materials and interfaces. To search the infinitely vast configuration space of materials structure and composition, we will integrate the proven DFT code FHI-aims with various structure search codes: One of them is SAMPLE, a structure search code developed at the TUG that is specifically dedicated to inorganic/organic interfaces.

Anna Maria Coclite was awarded an ERC Starting Grant      >> more >>

The aim of Anna Maria Coclite’s ERC-sponsored project “Smart Core” is to develop a hybrid material which can perceive temperature, humidity and pressure simultaneously and react accordingly. State-of-the-art materials currently include three different sensors for the perception and transmission of individual stimuli. The three-in-one hybrid material which Coclite and her team will work on simplifies the sensors of artificial skin and can increase sensory resolution 20-fold in comparison to human skin. This hugely increased sensory resolution of the novel hybrid material is achieved using a variety of nanorods on a surface. The “smart core” of these nanorods, hence the name of the project, consists of a polymer which responds to temperature and humidity by expanding. The change in thickness of the polymer exerts pressure on its shell, i.e. the nanorods, and these react sensitively to the pressure and in turn trigger stimuli. The hybrid material will achieve some 2,000 sensors per square millimetre, and thus spatial resolutions far below one millimetre, which corresponds to that of the human fingertip.

Defects in Organic Monolayers

Oliver T. Hofmann was granted a three-year stand-alone project by the Austrian Science Fund FWF to study “Defects at Inorganic/Organic Interfaces”. Within the project, we will use density functional theory to study the impact of structural defects, such as dislocations, voids, etc., as well as the impact of chemical defects (i.e., contamination), on the electronic structure of molecule/metal interfaces. Such defects can be of high relevance, e.g., for organic electronics, where they potentially lead to the formation of “hot spots” that later lead to accelerated device degradation. A major challenge in the context of this project, however, is that the nature and the quantity of these defects is completely unknown. In order to elucidate these, we will develop a tailored first-principles structure search algorithm.

IAAM Scientist Medal - 2016

Anna Maria Coclite won the IAAM Scientist Medal 2016, awarded by the International Association of Advanced Materials for her “notable and outstanding research in the Advanced Materials Science and Technology” (as written in the certificate). The award ceremony took place during the European Advanced Material Congress.

IAAM Scientist Medal - 2016

Anna Maria Coclite won the IAAM Scientist Medal 2016, awarded by the International Association of Advanced Materials for her “notable and outstanding research in the Advanced Materials Science and Technology” (as written in the certificate). The award ceremony took place during the European Advanced Material Congress.

David Egger wins a Sofja Kovalevskaja Award      >> more >>

David Egger won a 2016 Sofja Kovalevskaja Award from the Humboldt Foundation. This award is granted to excellent young researchers who have completed their doctorate in the last six years and have published work in prestigious international journals. The Sofja Kovalevskaja Award will fund him for five years to build up a working group at the University of Regensburg. David investigates organic-inorganic perovskites which offer especially favourable properties for applications in solar cells. His goal is to optimise the material at the atomic level using supercomputers and with that increase its efficiency for using it in novel renewable energy technologies.

Polymorphism in Organic Thin Films

In collaboration with colleagues at the Université Libre de Bruxelles in Brussels, Belgium, Andrew Jones and Roland Resel have published a feature article in Advanced Functional Materials.

The article summarizes the current state of understanding regarding polymorphism within organic thin films, with a particular focus on a special type of polymorph only observed in thin films known as either substrate-induced or thin-film phases. Examples are taken from the literature, alongside several others which have been studied in the Institute of Solid State Physics. As the crystal structure of a material is strongly correlated with its physical properties, the work aims to understand why different polymorphs form and how this could be controlled so that materials with enhanced properties could be produced. Such control would be of importance in fields such as organic electronics and also in pharmaceutical science.

Adv. Funct. Mater., 2016, 26, 2233-2255

Polymorphism in Organic Thin Films

In collaboration with colleagues at the Université Libre de Bruxelles in Brussels, Belgium, Andrew Jones and Roland Resel have published a feature article in Advanced Functional Materials.

The article summarizes the current state of understanding regarding polymorphism within organic thin films, with a particular focus on a special type of polymorph only observed in thin films known as either substrate-induced or thin-film phases. Examples are taken from the literature, alongside several others which have been studied in the Institute of Solid State Physics. As the crystal structure of a material is strongly correlated with its physical properties, the work aims to understand why different polymorphs form and how this could be controlled so that materials with enhanced properties could be produced. Such control would be of importance in fields such as organic electronics and also in pharmaceutical science.

Adv. Funct. Mater., 2016, 26, 2233-2255

Vacuum Society

Robert Schennach is the new representative of TU Graz in the Austrian Vacuum Society (ÖGV). This society promotes advances in vacuum related science and technology in Austria.

Robert will also be the Austrian representative at the International Union for Vacuum Science, Technique and Applications (IUVSTA) for the Biointerfaces group. The IUVSTA organises the International Vacuum Conferences and several other smaller conferences and workshops (e.g. ECOSS, European Vacuum Conference).

THIRD PARTY FUNDING: 3-YEAR FWF Project

Oliver T. Hofmann was granted a three-year stand-alone project by the Austrian Science Fund FWF. Within the project, entitled “Interaction Strength Tuning at Inorganic/Organic Interfaces”, a post-doc and a PhD student will be employed to study charge transfer at interfaces between organic molecules and coinage metals semiconductors. Such interfaces are of high technological relevance for organic electronics as well as for catalysis. Interestingly, semiconductor and metal substrates seem to induce very different charge-ordering phenomena. Using doping to make semiconductors gradually “more metallic”, and alloying to make coinage metals “less metallic”, the transition between the differently ordered phases will be studied using various computational methods, including density functional theory and post Hartree-Fock methods.

WKO Research Stipend

Georg Urstöger has won a stipend from the Styrian Chamber of Commerce for master thesis that have a strong bond to industrial research. The granted thesis, "Proton Conductive Polymers deposited by Plasma Enhanced Chemical Vapor Deposition”, focuses on the production of proton conductive membranes to be used in the fuel cell industry. Proton conductive membranes are the heart of the fuel cell that allows the protons to permeate but block the electrons which are guided through an external circuit to generate electricity. The technique we use is plasma enhanced chemical vapor deposition (PECVD) which due to its nature has many advantages such as the tendency to produce crosslinked, stable polymers. The outcome of this thesis is to create a product that is feasible in cost but incorporates the good qualities of the currently best choices such as Nafion®.

ESG Nano Prize 2014

Sebastian Nau won the 2014 Nano Prize of the Erwin Schrödinger Society. This prize is awarded to young scientists for excellent work in the field of nanoscience or nanotechnology. He reported a breakthrough in the understanding of organic memory devices in the journal Advanced Materials.


Unravelling the Nature of Unipolar Resistance Switching in Organic Devices by Utilizing the Photovoltaic Effect, Sebastian Nau, Stefan Sax, and Emil J. W. List-Kratochvil, Volume 26, Pages 2508–2513 (2014).

HWCVD conference 2014      >> more >>

Marie Curie Fellowship for Dr. Anna Maria Coclite

Anna Maria Coclite was awarded a Marie Curie International Incoming Fellowship within the 7th European Community Framework Programme. The fellowship funds top-class researchers from non-European Countries to work on projects in Europe. The granted project, "Smart multi Stimuli-responsive Supports for controlled cell growth (Three S) " , aims to the development of a material that respond to several external stimuli such as humidity, light and temperature. Multi-stimuli responsive materials have not been widely investigated because they require fine control over the material composition and response. The material will be obtained by initiated Chemical Vapor Deposition (iCVD), a method, invented at MIT, that allows obtaining thin films with high versatility. The envisioned outcome will be that the water uptake of the material changes with the afore-mentioned stimuli, resulting in stiffness change.

FWF Elise Richter Fellowship for Dr. Karin Zojer      >> more >>

The research project associated to the Elise Richter fellowship, “Transient characteristics of organic thin-film transistors”, focuses on the operation frequencies of organic thin film transistors (OTFTs). Such transistors represent an increasingly important technology, since they can be cheaply fabricated on large and flexible substrates. To date, however, their operating speed cannot compete with the switching speed of silicon-based transistors. Theoretical simulations will employed to demonstrate that the apparent lack of switching speed is due to an inefficient injection of charge carriers from the electrodes.


Article in the university press:

TU GRAZ people #50/2014-2

Advanced Electronic Materials

Emil J.W. List-Kratochvil has been appointed to the International Advisory Board of the Wiley journal Advanced Electronic Materials.

The Advanced Materials journal family (Advanced Materials, Advanced Energy Materials, Advanced Functional Materials, Advanced Healthcare Materials, Advanced Optical Materials, and Advanced Materials Interfaces) is being expanded to include Advanced Electronic Materials which will feature research in the fields of electronic and magnetic materials. The journal’s launch is scheduled for January 2015.

Call for papers: Special Issue on "Nanostructured Functional Polymers" Nanoscience and Nanotechnology Letters

A rational design of functional nano-engineered materials can be easily achieved by tuning the functionalities of polymers. Polymers can be powerful in alternative or in combination with inorganic materials because of their ease of fabrication and the ability to be easily integrated into processing lines. The organic nature of the polymer thin films makes them invaluable for biomedical applications and the ability to tune the response of the films by functionalization significantly expands the application areas of the polymers. Novel materials and structures are constantly investigated. Nanostructured polymers have greatly succeeded in showing appealing macroscopic properties, such us superhydrophobicity, energy conversion, because all the processes that occur at the surfaces and interfaces are enhanced. Therefore, nanostructured functional polymers are gaining considerable importance for many technological applications in the field of, but not limited to, nanodevice production, energy, electronics, and photonics.

The aim of this special issue is to explore the most up-to-date synthesis and applications of nanostructured functional polymers, including deposition in thin film form either from the vapor phase or by conventional organic synthesis.

E-MRS 2013 - Best Poster Award

Bettina Friedel won the Best Poster Award at the Fall Meeting 2013 of the European Materials Research Society in Warsaw for her contribution in Symposium D - Paper Electronics.
Her presentation with the co-authors Heribert Kopeinik and Robert Schennach, was titled "Cellulose Fiber Networks as Substrate for Organic Photovoltaics" and described a novel approach for diodes based on natural cellulose fibers, silver nanowires and polymeric semiconductors.

Organic Transistor results published in Advanced Materials      >> more >>

Researchers at the NanoTecCenter Weiz have developed a Electrolyte-Gated Organic Field-Effect Transistor (EGOFET) that can measure the concentration of specific ions in solution. These sensors could be used for biomedical diagnostics,
food-monitoring, industrial process- and water-control.

Kerstin Schmoltner, Johannes Kofler, Andreas Klug, and Emil J. W. List-Kratochvil, Electrolyte-Gated Organic Field-Effect Transistor for Selective Reversible Ion Detection, Adv. Mater. 2013 doi:10.1002/adma.201303281

FWF project: Microscopic Inhomogeneities in Solution-Processed Organic Solar Cells Caused by the PEDOT:PSS Colloidal Interlayer

Bettina Friedel obtained an FWF project to investigate microscopic inhomogeneities in organic semiconductors. Especially in organic photovoltaics, devices still suffer from considerable spatial variations, as in thin film diodes these have detrimental effects on the local device physics and thus on the entire device in device performance. One suspected source of origin therefore is the colloidal PEDOT:PSS electrode interlayer. This project investigates the very basic microscale diode physics in organic devices with a focus on the conditions of this PEDOT:PSS interlayer. The expected new insights will not only help understanding of the device behaviour of solar cells comprising PEDOT:PSS interlayers, but shall also allow conclusions to other colloidal systems in use and in future, like graphene or nanowires.

Dissertation der Woche in Die Presse

Alfred Neuhold untersuchte Grenzschichten in Bauteilen aus organischer Elektronik. Sein Dissertation ist beschrieben in die Wissenschaftsteil von Die Presse.



Die Presse 27.1.2013

Adhesion of cellulose fibers in paper

An article on paper strength was featured on the cover of the Journal of Physics: Condensed Matter. The strength of fiber-fiber bonds was measured for different water content in the paper. This research was performed at the Christian Doppler Laboratory of Surface Chemical and Physical Fundamentals of Paper Strength along with collaborators at the Peter Grünberg Institute in Jülich, the International Centre for Theoretical Physics in Trieste, Montanuniversität in Leoben, and Joanneum Research.

10.1088/0953-8984/25/4/045002

Nano-Preis der Erwin Schrödinger Gesellschaft für Nanowissenschaften (ESG-Nano)

David Egger, Dissertant am Institut für Festkörperphysik der TU Graz, erhielt für seine Arbeit zu Wechselwirkungen und physikalischen Eigenschaften von Molekülen am 26. November den Nano-Preis der Erwin Schrödinger Gesellschaft für Nanowissenschaften (ESG-Nano).

mehr

Award of Excellence 2012

Den „Award of Excellence“ für eine besonders herausragende Dissertation verlieh das Bundesministerium für Wissenschaft und Forschung (BMWF)am 12. Dezember Ferdinand Rissner für seine Dissertation zu Monolagen organischer Moleküle, also zu Materialschichten mit geringstmöglicher Dicke.

mehr

Award of Excellence 2011

Den „Award of Excellence“ für eine besonders herausragende Dissertation verlieh das Bundesministerium für Wissenschaft und Forschung (BMWF) Eduard Gilli für seine Dissertation zu Entwicklung von Analysemethoden für Faser Bindungen in Papier

mehr

Kooperierende Moleküle      >> more >>

Die elektronischen Bauelemente der Zukunft sollen schneller, leistungsfähiger und vor allem immer kleiner sein. Die langfristige Vision der ultimativen Miniaturisierung sind einzelne Moleküle, die elektrisch leiten und schalten. Um dieser Vision näher zu kommen, müssen die Wechselwirkungen und physikalischen Eigenschaften von Molekülen im Detail erforscht werden. David Egger, Dissertant am Institut für Festkörperphysik der TU Graz, hat genau das getan und ist dabei auf ein interessantes Phänomen gestoßen: Im Kollektiv verhalten sich die chemischen Bauteile nicht als „Einzelkämpfer“, sondern arbeiten zusammen. Die Forschungsarbeit, die der junge Wissenschafter in Kooperation mit Kollegen der Humboldt-Universität zu Berlin verfasste, wurde kürzlich im renommierten Fachjournal „Advanced Materials“ publiziert.

Zur Originalarbeit „ Polarity Switching of Charge Transport and Thermoelectricity in Self-Assembled Monolayer Devices“: doi: 10.1002/adma.201200872

Visit to EPCOS

On October 5, 2012 the institute made an excursion to the electronic components manufacturer EPCOS. We toured the facilities where they produce multilayer ceramic components, including piezo actuators.

PRB Kaleidoscope image

Physical Review B PRB maintains a collection of visually attractive images that convey important scientific information. This collection is called the Kaleidoscope Images. In August 2012, one of the images from Film of para-hexaphenyl on a sputtered mica surface, L. Tumbek, C. Gleichweit, K. Zojer, and A. Winkler, Phys. Rev. B 86, 085402 (2012) was selected for this collection.


Many Physical Review B articles contain images that not only convey important scientific information, but also are visually attractive. The editors will showcase a selection of images from each issue in order to promote interest in the aesthetics of physics. Images are selected solely for their artistic appeal. Images from papers published recently appear on our main page and are also added to this archive. Click on each thumbnail to see the full image, caption, and link to the paper.

Switching Charge Transport through Self-Assembled Monolayers      >> more >>

In collaboration with Georg Heimel from the Humboldt-Universität zu Berlin, David Egger, Ferdinand Rissner and Egbert Zojer from the Institute of Solid State Physics recently published an article in

Advanced Materials

.

Self-assembled monolayer devices can exhibit drastically different charge-transport characteristics and thermoelectric properties despite being composed of isomeric molecules with essentially identical frontier-orbital energies. This is rationalized by the cooperative electrostatic action of local intramolecular dipoles in otherwise nonpolar species, thus revealing new challenges but also new opportunities for the targeted design of functional building blocks in future nanoelectronics.

Schrödinger Fellowship

Oliver Hofmann was awarded an FWF Schrödinger Fellowship. These fellowships fund the stay of Austrian scientists at leading foreign research institutions. When the scientists return, they bring critical research skills to Austria. Hofmann will spend two years as a postdoc at the Fritz Haber Institute in Berlin and then return for one year as a postdoc to the TU Graz.

In organic electronics, charge injection layers (CILs) are commonly
added between the inorganic electrode and the active organic material to
optimize charge injection (respectively extraction) barriers and exciton
lifetimes in organic light emitting devices (OLEDs) or photovoltaic
cells (OPVs). Most studies in this field have focused on the effect of
the CIL on the effective work function on the substrate. The question
how CILs affect the morphology of subsequently deposited organic
material and what the effect on eventual charge transfer processes is
remains open. Therefore, a density functional theory study based on
advanced exchange-correlation functionals (including hybrid and
non-local functionals), as well as many-body perturbation theory, such
as the /GW/ approach and the random-phase-approximation (RPA),is
proposed in which the influence of various CILs on the morphology and
electronic levels of the active organic material is analyzed for the
example of different combinations of CILs and prototypical organic
materials adsorbed on zinc oxide substrates. In collaboration with
experimental partners, the mechanisms of bonding and interface dipole
formation at technologically relevant interfaces will be investigated.

Advanced Functional Materials

Egbert Zojer has been appointed to the editorial board of the research journal Advanced Functional materials. This journal reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology.

Advanced Functional Materials Editorial Board

Modeling of Hybrid Inorganic-Organic Systems      >> more >>

In collaboration with the Fritz Haber Institute in Berlin, Egbert Zojer has published an article in Physical Review Letters about organic molecules on metal surfaces.

The accurate description of van der Waals interactions is one of the central challenges for density functional theory that hampers its applicability to weakly interacting systems. A possibility to account for such interactions is to sum over pair potentials, where a central problem for metal/organic interfaces is, how the actual metallic polarizability can be accounted for. This problem has recently been overcome by combining dispersion-corrected density-functional theory with the Lifshitz-Zaremba-Kohn theory for the nonlocal Coulomb screening within the bulk. This method allows the calculation of adsorption geometries for a number of interfaces at an unprecedented level of quality at very low additional computational costs and, therefore, holds a high promise for lifting the simulation of metal-organic interfaces "to the next level".

PRL 108, 146103 (2012)

Determining the structure of organic thin films

Two publications recently appeared in Advanced Materials from the x-ray diffraction team headed by Roland Resel. They are experts on determining how molecules arrange themselves in thin films.

Substrate-Induced Crystal Plastic Phase of a Discotic Liquid Crystal
A new phase of a known discotic liquid crystal is observed at the interface with a rigid substrate. The structure of the substrate-induced phase has been characterized by atomic force microscopy, specular X-ray diffraction, and small-angle and wide-angle grazing incidence X-ray diffraction. The substrate-induced phase, which has a thickness of ~30 nm and a tetragonal symmetry, differs notably from the bulk phase. The occurrence of such phase casts a new light on alignment of discotic liquid crystals.

http://dx.doi.org/10.1002/adma.201103739

Solution-Processable Septithiophene Monolayer Transistor
Septithiophene with endgroups designed to form liquid crystalline phases and allows controlled deposition of an electrically connected monolayer. Field effect mobilies mobilities of charge carriers and spectroscopic properties of the monolayer provide evidence of sustainable transport and delocalization of the excitation through intermolecular interactions within the layer.

http://dx.doi.org/10.1002/adma.201103522

Award for Simulation and Modelling       >> more >>

David Egger was honored by the Styrian government with the "Forschungspreis für Simulation und Modellierung" in the category "Nachwuchsförderung".

6th Winterschool on organic electronics: Self-Assembly and Hybrid Devices      >> more >>

A winterschool on self-assembly within thin films, the basic properties of organic hybrid structures, and their devices will be held March 3rd - March 9th, 2012 at the Universitäts-Sportheim Planneralm, Donnersbach, Austria. The workshop organizer is Roland Resel.

http://www.if.tugraz.at/ws2012/

Top cited article

An article written by Georg Heimel, Lorenz Romaner, Jean-Luc Brédas, and Egbert Zojer was the most cited article in the journal Surface Science in the period 2005 - 2010.

Georg Heimel, Lorenz Romaner, Jean-Luc Brédas, Egbert Zojer, Organic/metal interfaces in self-assembled monolayers of conjugated thiols: A first-principles benchmark study, Surface Science, Volume 600, pp. 4548-4562 (2006).

Organic light-emitting diodes      >> more >>

Emil J. W. List and Norbert Koch were the guess editors of an Optics Express Focus Issue on organic light-emitting diodes. They reviewed the status quo and described the current developments.

"Focus Issue: Organic light-emitting diodes–status quo and current developments," Opt. Express 19, A1237-A1240 (2011)

Optische Anordnung für spektroskopische Infrarot-Ellipsometrie

Die Erfindung „Optische Anordnung für spektroskopische Infrarot-Ellipsometrie“ von E. Gilli, M. Kornschober und R. Schennach wurde im Jahr 2009 mit dem PRIZE Award ausgezeichnet. Damit wurde der Bau eines Prototyps ermöglicht. Schon während des Baus konnte die Firma Anton Paar als Partner für eine internationale Patentanmeldung (PCT) gewonnen werden. Darauf hin wurde das Projekt im Herbst 2010 bei Houska Preis der B&C Provatstiftung eingereicht.
Die spektroskopische Infrarot-Ellipsometrie ist insbesondere im Feld der Charakterisierung und Qualitätssicherung von Dünnschichtsystemen in ihrer Präzision und Mächtigkeit unerreicht, da hier mit einer einzigen Messung in sehr hoher Empfindlichkeit sowohl die chemische Zusammensetzung der überprüften Schichten, als auch die Schichtdicken, die Oberflächenrauigkeit und andere geometrische Parameter überprüft werden können.
Die Idee für das Projekt wurde durch die Untersuchung zellulosischer Dünnschichtsysteme im Christian Doppler Labor für oberflächenphysikalische und chemische Grundlagen der Papierfestigkeit motiviert, in welchem die Firmen Mondi, Lenzing AG und Kelheim Fibres GmbH als Industriepartner mit der TU Graz und der Uni Leoben zusammenarbeiten. Die Spektroskopische Infrarot-Ellipsometrie ist erst seit wenigen Jahren kommerziell verfügbar (erste Fachpublikationen ab 2003). In enger Zusammenarbeit mit der TU Graz wird Anton Paar sein Portfolio an Analysegeräten im Röntgen-, Spektroskopie- und Rheologiebereich nun mit Infrarot-Ellipsometrie ergänzen.
Das Projekt würde von der B&C Privatstiftung mit einem Anerkennungspreis in der Höhe von € 5.000,00 ausgezeichnet.

Advanced Materials Science

The TU Graz Research Journal produced a special issue on Advanced Materials Science.

Research 2010-2|Nr. 4

Neue strategie fü Halbleitertechnologie

Physiker der TU Graz haben auf Basis einer quantenmechanschen Simulation Antworten auf grundlegende Fragen zur Änderung von Grenzflächeneigenschaften von Elektrodenmaterianlien mit organischen Molekülen gefunden.

Artikel in die Presse

Organic transistors

The Austrian Newspaper die Presse published an article about how organic semiconductors can be used to make sensors, displays, and solar cells.

The article in die Presse

PhD Fellowship Program of the Austrian Academy of Sciences

David Egger receives one of the prestigious 3 year DOC fellowships by the Austrian Academy of Science. Within his project "Applying Green’s function techniques to interfaces between self-assembled monolayers and noble metals" David will continue his investigation of metal/organic interfaces and devices he started with Georg Heimel from HU Berlin in the course of his master's thesis. As a long term goal several ways to conquer the notorious shortcomings of common density functional approximations shall also be analyzed. Since August 2009 David is a member of Egbert Zojer's group at the Institute of Solid State Physics. He finished his master's study in April 2010.

derStandard: Wie es in Papiersäcken zu festen Bindungen kommt      >> more >>

Forscher an der TU Graz und der Montan-Uni Leoben wollen Zementsack & Co reißfester und effizienter machen

Papier ist in seinen vielfältigen Anwendungsgebieten ein derart alltägliches Gebrauchsmaterial, dass man annehmen will, Produktion und Nutzung seien längst bis zum Anschlag optimiert. Spricht man mit Robert Schennach von der TU Graz, wird schnell klar, dass das Gegenteil der Fall ist. Als Leiter des Christian-Doppler-Labors für Oberflächenphysikalische und chemische Grundlagen der Papierfestigkeit versucht er mit seinem Team überhaupt erst "zu verstehen, was zwei Papierfasern zusammenhält" . Das sei eine Frage, "auf die man bis heute keine richtige Antwort weiß" .

LesMehr Information zu diesem Thema finden Sie im entsprechenden Artikel in "der Standard".

Nano and Photonics & FemtoMat

We proudly announce that 2011 Nano and Photonics will be jointly organised with
4th European Conference on Applications of Femtosecond Lasers in Materials Science

14th - 18th of March 2011
Mauterndorf / Salzburg
Austria

www.nanoandphotonics.at

Fulbright scholarship

Jonathan Winterstein, a University of Connecticut doctoral student in materials science and engineering, will carry out research for nine months at the Austrian Centre for Electron Microscopy and Nanoanalysis – an institute renowned for its high quality electron spectroscopy and microscopy. The Centre is associated with the Technical University of Graz.

TU Graz People Nr. 33/2010-1

ACR Woman Award 2010

Dr. Nadejda Matsko of FELMI won the ACR Woman Award 2010 for the development of the first cryo-3D AFM.

2010 FEI Image Contest      >> more >>

Harald Plank of FELMI won the April 2010 FEI image contest.

The image shows an array of freestanding Pt nanorods on silicon fabricated by electron beam induced deposition from the gas phase. The individual rods reveal a base diameter of about 80 nm and a height of 1 μm. The wavy appearance was actually an artifact but too nice to be ignored. Image was post-colorized by Margit Wallner (FELMI).

Tuning the Threshold Voltage in Organic Thin-Film Transistors      >> more >>

The insertion of a thin photoacid generator layer between the dielectric and the active layer in organic thin-film transistors (OTFTs) allows control of the threshold voltage through UV illumination by means of interfacial channel doping. All p-type organic inverters can be realized by combining an OTFT working in depletion mode and one operating in enhancement mode.

Tuning the Threshold Voltage in Organic Thin-Film Transistors by Local Channel Doping Unsing Photoreactive Interfacial Layers, M. Marchl, M. Edler, B. Stadlober, A. Haase, A. Fian, G. Trimmel, T. Griesser, E. Zojer, Advanced Materials (2010)

Self-assembled monolayers

Self-assembled monolayers (SAMs) play an ever increasing role in organic and molecular electronics. Consequently, there is a high interest in an in-depth understanding of their intrinsic electronic properties as a prerequisite for future developments. The current Progress Report summarizes recent efforts in the area of computational modeling of SAMs geared at developing a clear understanding of the relationship between the chemical structure of the SAM-forming molecules and the electronic properties of the monolayer.

G. Heimel, F. Rissner, E. Zojer, "Modeling the electronic properties of Pi-conjugated self-assembled monolayers", Progress Report, Advanced Materials 22, 2494 (2010).

Chemisorbed conjugated molecules allows controlling interface electronic structure

Charge-transfer monolayers hold a high potential for modifying carrier-injection properties of electrodes in organic electronics. A particular promising molecule in this context is HATCN. The electronic properties of HATCN on Au(111), however, display a very unexpected dependence on film thickness with a work-function increase setting in only for films thicker than 3 Angstrom. In a study joining groups from Berlin, Graz, Mainz, and Groningen, this peculiar behavior could be clarified by combining various experimental techniques with quantum-mechanical modeling. It was attributed to an unprecedented complete change in the film structure with layer thickness.

B. Bröker, O. T. Hofmann, G.M. Rangger, P. Frank, R. P. Blum, R. Rieger, Luc Venema, A. Vollmer, K. Müllen, J. P. Rabe, A. Winkler, P. Rudolf, E. Zojer, and N. Koch, "Density dependent reorientation of chemisorbed conjugated molecules allows controlling interface electronic structure", Phys. Rev. Lett. 104, 246805 (2010).

Flexible monolayer electronics

Circuits such as a seven stage ring oscillator and a four bit code generator were built using self-assembled monolayer field effect transistors (SAMFETs) grown on a polymer surface. This demonstrates the feasibility of using SAMFETs on flexible substrates.

Fatemeh Gholamrezaie, Simon G. J. Mathijssen, Edsger C. P. Smits, Tom C. T. Geuns, Paul A. van Hal, Sergei A. Ponomarenko, Heinz-Georg Flesch, Roland Resel, Eugenio Cantatore, Paul W. M. Blom and Dago M. de Leeuw, Ordered Semiconducting Self-Assembled Monolayers on Polymeric Surfaces Utilized in Organic Integrated Circuits, Nano Lett. 10, pp 1998–2002, (2010).

Research 2010. Messe für Wissenschaft, Forschung und Innovation      >> more >>

Mit der Research 2010 wird das in Österreich einzigartige Projekt einer Präsentationsplattform für Wissenschaft, Forschung und Innovation am 11. und 12. Juni 2010 in der Halle A der Messe Graz über die Bühne gehen.

www.researchaustria.at

Poster Institut Für Festkörperphysik

New OLED material      >> more >>

Organic Light Emitting Diodes (OLEDs) are a promising technology for the next generation of fullcolor-flat-panel displays and lighting applications. A new material for OLEDs has been developed by a team from the Max-Planck Institute for Polymer Research in Mainz and the NanoTecCenter in Weiz. The pyrene based material emits blue-turquoise light with a maximum in the electroluminescence at 465 nm.

Teresa M. Figueira-Duarte, Pablo G. Del Rosso, Roman Trattnig, Stefan Sax, Emil J. W. List, and Klaus Müllen, Designed Suppression of Aggregation in Polypyrene: Toward High-Performance Blue-Light-Emitting Diodes, Adv. Mater. 21 pp. ?? (2009)

Winter School on Organic Electronics      >> more >>

An international winter school on the fundamental properties of organic devices (sensors, transistors, and solar cells) is being organized by Prof. Roland Resel for the Austrian Research Project Cluster "Interface Controlled and Functionalized Organic Films." This is a network of scientific groups from Austria, which are working together to perform joint research on basic science of organic thin films and their application in organic electronics. The winterschool will be focused on device physics, contributions on that topic will be preferably selected as short lectures.

http://www.if.tugraz.at/ws2010/

Prototype PRIZE awarded

The Austrian ministry of economics (BMWFJ) awarded a prototype PRIZE to researchers in the Christian Doppler Laboratory for Paper Strength. €113000 was awarded to build a prototype of an ellipsometry insert for an infrared spectrometer. The insert was designed by Robert Schennach, Eduard Gilli, and Martin Kornschober.

Best Scientific Conference of 2008

The 8th International Symposium on Functional π-Electron Systems was voted the best scientific conference in Graz in 2008. This conference was held at the TU Graz from July 21st to 25th, 2008. The conference organizer was Prof. Emil List.

Adsorption of CO on Ni/Cu(110) bimetallic surfaces

Bimetallic surfaces play a decisive role in heterogeneous catalysis. Due to the particular arrangement of the different atoms at the surface, new reaction pathways can be opened and both the activity and selectivity of catalysts can be improved. In a combined experimental and theoretical work researchers from the Technical University Graz and the University Ulm could show how CO molecules, frequently used in catalytic reactions, adsorb on a nickel-copper surface alloy. The found out that CO adsorption on nickel dimers consisting of in-surface and adjacent sub-surface atoms can best explain the observed experimental data. These findings should contribute to a better understanding of tailoring catalytic processes with the help of bimetallic catalysts. The results were published in Physical Review B 80 (2009) 085421. DOI: 10.1103/PhysRevB.80.085421.

Charge transport in self-assembled monolayer field-effect transistors

The mobility of self-assembled monolayer field-effect transistors (SAMFETs) traditionally decreases dramatically with increasing channel length. Recently, however, SAMFETs using liquid-crystalline molecules have been shown to have bulk-like mobilities that are virtually independent of channel length. Here, we reconcile these scaling relations by showing that the mobility in liquid crystalline SAMFETs depends exponentially on the channel length only when the monolayer is incomplete. We explain this dependence both numerically and analytically, and show that charge transport is not affected by carrier injection, grain boundaries or conducting island size. At partial coverage, that is when the monolayer is incomplete, liquid-crystalline SAMFETs thus form a unique model system to study size-dependent conductance originating from charge percolation in two dimensions.

Monolayer coverage and channel length set the mobility in self-assembled monolayer field-effect transistors, S. G. J. Mathijssen, E. C. P. Smits, P. A. van Hal, H. J. Wondergem, S. A. Ponomarenko, A. Moser, R. Resel, P. A. Bobbert, M. Kemerink, R. A. J. Janssen, D. M. de Leeuw, Nature Nanotechnology (2009).

Doping Molecular Wires      >> more >>

The ultimate miniaturization of electronics would be to use single molecules as electronic components. In a recent Nanoletters article, a team from M.I.T., Humbolt University, Montan University, Georgia Tech, and the TU Graz, explain why exchanging a single carbon atom with a nitrogen atom in certain molecules increases the electrical conductivity of the molecules by more than two orders of magnitude. The results provide clear guidelines for the rational design of single-molecule metals and highly doped single-molecule semiconducting devices. This is important for the development of bio-compatible interfaces between inorganic and organic matter. The image visualizes the transport channel in one of the studied molecules, a boron doped dithiol derivative of pyrene where the thiol groups are separated from the π-conjugated core by a methylene (i.e., -CH2-) spacer.

Doping Molecular Wires, Georg Heimel, Egbert Zojer, Lorenz Romaner, Jean-Luc Bredas, and Francesco Stellacci, Nanoletters (2009) doi:10.1021/nl9006613

Cover of Journal of Materials Research      >> more >>

A publication of FELMI was featured on the cover of the International Journal of Materials Research. In Cr steels, nitrides (MX, M2X) and modified Z-phase are of special interest because of their different contribution to the creep strength of the material. The changes in the chemical composition of complex nitrides and their crystallography were investigated using transmission electron microscopy and electron energy-loss spectrometry.


Mihaela Albu, Francisca Méndez Martín, Gerald Kothleitner, Bernhard Sonderegger, Compositional characterisation and thermodynamic modelling of nitride precipitates in a 12% Cr steel, Journal of Materials Research 99 pp. 422-427 (2008).

Cover of Microscopy      >> more >>

The first 2 D image obtained using neutral helium atoms to image a sample appeared on the cover of the Journal of Microscopy. The imaged sample is a hexagonal copper grating with a period of 36 μm and a rod thickness of 8 μm. The image was obtained in transmission mode by scanning the focused beam across the sample.

M. KOCH, S. REHBEIN, G. SCHMAHL, T. REISINGER, G. BRACCO, W. E. ERNST & B. HOLST, Imaging with neutral atoms—a new matter-wave microscope, Journal of Microscopy 229, p. 1 (2008).

Printing functional nanostructures      >> more >>

An article on a new method for nanostructure formation from conjugated polymers appeared on the December 2008 inside cover of Soft Matter. An aqueous dispersion of semiconducting polymer nanospheres (SPNs) was deposited by inkjet printing onto a polymer surface patterned by soft embossing. By interaction between the spheres and the undulated surface a self assembly process is triggered, resulting in the formation of SPN nanostructures determined by the template. Both template layer and assembled SPNs can be incorporated into a device structure. We demonstrate a light emitting structure for use in polymer light emitting devices including analyses by atomic force microscopy and Kelvin probe force microscopy.

Printing functional nanostructures: a novel route towards nanostructuring of organic electronic devices via soft embossing, inkjet printing and colloidal self assembly of semiconducting polymer nanospheres, Evelin Fisslthaler, Alexander Blümel, Katharina Landfester, Ullrich Scherf and Emil J. W. List, Soft Matter, 2008, 4, 2448, DOI: 10.1039/b812235k

Plastic Electronic Foundation Awards for Innovation      >> more >>

Prof. Emil List won the award for the best project development at the 4th Global Plastic Electronics Conference on October 28, 2008 in Berlin. The award cited his work on organic optoelectronics and sensors.

www.plastic-electronics.org

Inkjet printed polymer light-emitting diodes      >> more >>

An aqueous dispersion of semiconducting polymer nanospheres was used to fabricate polymer light-emitting devices by inkjet printing in an easy-to-apply process with a minimum feature size of 20 μm. To form the devices, the electroluminescent material was printed on a nonemitting polystyrene matrix layer and embedded by thermal annealing. The process allows the printing of light-emitting thin-film devices without extensive optimization of film homogeneity and thickness of the active layer.

Evelin Fisslthaler, Stefan Sax, Ullrich Scherf, Gernot Mauthner, Erik Moderegger, Katharina Landfester, and Emil J. W. List, Inkjet printed polymer light-emitting devices fabricated by thermal embedding of semiconducting polymer nanospheres in an inert matrix, Appl. Phys. Lett. 92, 183305 (2008)

Bottom-up organic integrated circuits

A research team from The Netherlands, Austria, Russia, and Germany announced a breakthrough in the development of organic electronic integrated circuits in the October 16, 2008 issue of the journal Nature. Self-Assembled Monolayer Field Effect Transistors (SAMFETs) were used to build circuits including a 15-bit code generator consisting of over 300 transistors. A critical layer of the SAMFETs consisted of a single molecular layer of quinquethiophene molecules which self-assembled into an ordered two-dimensional crystal. Although they are not as small or as fast as state-of-the-art silicon transistors, the self-assembly of molecules into useful devices is considered the ultimate technology for mass production and this is an important demonstration of how self-assembly can be used in the fabrication of a complex circuit. Organic transistors such as this are most useful in applications where transistors are distributed over a large area such as they are in a display.

Oliver Werzer and Roland Resel of the Institute of Solid State Physics, TU Graz measured the degree of ordering of the molecules in the thin organic layer. This was done by shining an intense beam of x-rays on the molecular layer and observing the resulting diffraction peaks. The European Synchrotron Radiation Facility in Grenoble was used to generate the x-rays.

C. P. Smits et al., Bottom-up organic integrated circuits, Nature 455, pp. 956-959 (2008)

ESG-Nano-Prize

Peter Pacher and Daniel Koller shared the 2008 ESG-Nano-Prize awarded by the Erwin Schrödinger Society for Nanoscience. Peter Pacher recently finished his PhD on organic electronic devices at the Institute of Solid State Physics. Daniel Koller is a graduate student at the Karl Franzens University working on plasmonic devices.

Nano Youth Award      >> more >>

Evelin Fisslthaler won the 2008 Nano Youth Award of the Austrian Federal Ministry of Transport, Innovation and Technology. The award is given for excellent research in the field of nanoscience and nanotechnology.

Surface plasmon coupled electroluminescent emission      >> more >>

Surface plasmons are waves that appear at the surface of a metal. Light and electrons are coupled in these waves such that the light intensity and electron density go up and down together. Surface plasmon devices that process optical signals can be smaller than ordinary optical devices since the wavelength of the plasmons is shorter than the wavelength of light.

Together with our NAWI partners at the Karl Franzens University and the Nanoteccenter Weiz, organic light emitting diodes were used to investigate the light emitting properties of surface plasmon modes.

D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. R. Aussenegg, A. Leitner, J. R. Krenn, S. Eder, S. Sax, and E. J. W. List, Surface plasmon coupled electroluminescent emission, Applied Physics Letters 92, 103304 (2008).

Chemical control of organic transistors      >> more >>



An image of an organic transistor made at the Institute of Solid State Physics, TU Graz appears on the inside cover of the July 7 issue of Advanced Materials. The image background shows an elemental map of a cross-section through an organic thin-film transistor containing a chemically reactive interfacial layer, as determined by energy-filtered transmission electron microscopy. The layout of the device (shown in the foreground) allows the realization of a transistor whose threshold voltage can be shifted by up to 60 volts upon exposure to ammonia switching its mode of operation from depletion to enhancement.


Peter Pacher, Alexandra Lex, Veronika Proschek, Harald Etschmaier, Elena Tchernychova, Meltem Sezen, Ullrich Scherf, Werner Grogger, Gregor Trimmel, Christian Slugovc, and Egbert Zojer, Chemical Control of Local Doping in Organic Thin-Film Transistors: From Depletion to Enhancement, Advanced Materials 20 pp. 3143–3148 (2008).

Pressemitteilung der TU-Graz
derStandard.at
pressetext austria
pro-physik.de
chemie.de

Inkjet-Printed Nanocrystal Photodetectors

Inkjet-printed photodetectors operating at wavelengths up to 3 μm were made using HgTe nanocrystals. Detectors operate in a spectral region of particular importance for biological applications, remote sensing and night-vision imaging. A room temperature detectivity of D* = 3.2 × 1010 cm Hz1/2W–1 close to the important telecommunication wavelength region was observed.

This work was performed by Prof. W. Heiss, Dr. M. Böberl, M. V. Kovalenko of the Institute for Semiconductor and Solid State Physics, University Linz together with Dr. S. Gamerith, Prof. E. J. W. List from the Christian Doppler Laboratory for Advanced Functional Materials and the Institute of Solid State Physics, TU Graz.

Media reports about this result:
ORF Magazin
Der Standard
Pressetext
Wallstreet Online
Scinexx, Das Wissensmagazin
IW online

The original article:
http://dx.doi.org/10.1002/adma.200700111

Advanced Materials Science      >> more >>

The Physics Institutes of the TU Graz participate in the Key Research Area of Advanced Materials Science. This strengthens the research and education programs on new materials and nanoanalysis.

Advanced Materials Science Website

Integrated self-aligned conjugated polymer fiber laser devices

Martin Gaal and Emil J. W. List have developed a fully integrated self-aligned distributed feedback fiber laser device, which was liquid imprinted on the top of optical fibers. Photo-pumping the second order grating led to direct coupling into the waveguide and allowed detecting the emission at the fiber end. Since an accurate alignment and efficient coupling of a laser into a waveguide is tricky, the presented approach may be a competitive candidate for integrated optoelectronic devices.



Martin Gaal and Emil J. W. List, Integrated self-aligned conjugated polymer fiber laser devices, phys. stat. sol. (RRL) 1, pp. 202– 204 (2007).

Computational Materials Science: Describing the properties of chemoresponsive molecules

In close collaboration with our collaborators in synthetic chemistry (especially at ICTOS), we derive structure to property relationships for organic sensor molecules. In particular, the change of molecular electronic or optical properties resulting from the interaction with an analyte are investigated.

Investigating paper strength

The Christian Doppler Laboratory for Surface Chemical and Physical Fundamentals of Paper Strength is investigating the interactions between fibers in paper. Two newspaper articles recently appeared containing an interview with the director of the laboratory, Prof. Robert Schennach.



Christian Doppler Laboratory for Surface Chemical and Physical Fundamentals of Paper Strength



Video from the ORF program Newton.



Hightech für Papier, Kleine Zeitung, 4 März 2007.



Papiersackerln unter der Lupe, Kurier, 4 März 2007.



Starke Fasern: TU-Forscherinnen und -Forscher prüfen Festigkeit von Papier

Nano Tec Center Weiz

Einen deutlichen Fokus auf das steirische Stärkefeld Nanotechnologie wollen die TU Graz und das Joanneum Research (JR) setzen. Dazu gründeten die beiden Grazer Forschungseinrichtungen nun die "Nano Tec Center Weiz Forschungsgesellschaft mbH" (NTC Weiz GmbH). Baubeginn für die Einrichtung der Gesellschaft im oststeirischen Weiz ist Ende April. Erste Forschungsprojekte sollen Ende 2007 an den Start gehen.



Von Lebensmittel-, Raumluft- und Arbeitssicherheits-Überwachung bis hin zu medizinischen Schnelltests für den Notfall reicht das Anwendungsspektrum der Sensor- und Bauelemente, die in der neuen NTC Weiz GmbH entwickelt werden sollen. Die TU Graz und das JR hatten ihre ohnehin traditionelle Zusammenarbeit durch einen im Jahr 2004 verabschiedeten Kooperationsvertrag zusätzlich gestärkt. Nun gründeten die beiden Forschungseinrichtungen am 28. Februar die NTC Weiz GmbH, um "die Steiermark noch deutlicher als bisher ins Zentrum einer entscheidenden Schlüsseltechnologie des 21. Jahrhunderts zu rücken", wie die TU am Montag bekannt gab.



Neue Anwendungsbereiche in Optoelektronik, Sensorik und Nanoanalytik sollen technologisch und wirtschaftlich erschlossen werden, so die beiden Geschäftsführer Helmut Wiedenhofer (JR) und Emil List (TU). Dazu soll die NTC Weiz auch mit internationalen Unternehmen zusammenarbeiten. Geplant sind Aktivitäten wie die Abwicklung von Forschungsprojekten über Dienstleistungen wie Test-, Mess- oder Prüfaufträge bis hin zur gemeinsam mit Firmen durchgeführten Prozess- und Produktentwicklung. Technologie-Coaching für Industriebetriebe und klein- und mittelständische Unternehmen soll einen weiteren Schwerpunkt des Weizer Nanocenters bilden.



Ab Mai wird an einem zweiten Weizer Energie- und Innovationszentrum gebaut. "Bis Ende November soll der Rohbau stehen und bis März bezugsfertig sein", so List. Auf 940 Quadratmetern werden Büro- und Laborräume angesiedelt sein. Erste Forschungsprojekte in den neuen Räumlichkeiten sollen Ende 2007 bzw. längstens Anfang 2008 starten. Die laufende Vorfeldforschung, die bis zur Übersiedelung ins neue Gebäude weiter an der TU Graz bzw. in Räumen der JR im "Weizer Energie- und Innovationszentrum I" durchgeführt wird, werde einen "fliegenden Start" ermöglichen, erklärte List. 15 bis 20 Mitarbeiter sollen in Zukunft dort arbeiten.



Die Kosten für die Infrastruktur belaufen sich auf drei Mio. Euro, die zu 50 Prozent aus EU-Regionalförderungsmittel und zu je 25 Prozent vom Zukunftsfonds des Landes Steiermark und aus Eigenmitteln der Gesellschafter kommen.